• golli@lemm.ee
    link
    fedilink
    English
    arrow-up
    9
    arrow-down
    1
    ·
    23 days ago

    Trying to do 10nm without EUV was a forgivable error

    How so? Literally no one uses EUV for 10nm and this wasn’t the problem. Isn’t SMCI even pushing DUV toproducing 5nm?

    My limited understanding is that they were too ambitious with e.g. using cobalt interconnects and at the same time had the issue that they tied their chip designs to specific nodes. Meaning that when the process side slipped they couldnt just take the design and use it on a different node without a lot of effort.

    Also I think they were always going to lose apple at some point. With better products they might have delayed it further. But apple fundamentally has an interest in vertical integration and control. And they were already designing processors for their phones and tablets.

    • Thrashy@lemmy.world
      link
      fedilink
      English
      arrow-up
      6
      ·
      22 days ago

      Keep in mind that when 10nm was in planning, EUV light sources looked very exotic relative to current tech, and even though we can see in hindsight that the tech works it is still expensive to operate – TSMC’s wafer costs increased 2x-3x for EUV nodes. If I was running Intel and my engineers told me that they thought they could extend the runway for DUV lithography for a node or two without sacrificing performance or yields, I’d take that bet in a heartbeat. Continuing to commit resources to 10nm DUV for years after it didn’t pan out and competitors moved on to smaller nodes just reeks of sunk-cost fallacy, though.

    • schizo@forum.uncomfortable.business
      link
      fedilink
      English
      arrow-up
      4
      ·
      22 days ago

      had the issue that they tied their chip designs to specific nodes.

      In fairness to Intel, every modern semi design house has that same issue: a chip is designed and laid out for a specific node, so this isn’t really a failing so much as a how-it-works.

      Of course, Intel was being very, very, very risky when they were designing for a process that basically didn’t exist assuming that hey, they’ll have it done by the time the design work is complete and they’re RTM.

      couldnt just take the design and use it on a different node without a lot of effort

      Which is what they had to do once they failed to ship newer nodes on schedule with the new CPU designs, and well, we see how that ultimately cost them a whole hell of a lot, if not ultimately their entire business.

      • golli@lemm.ee
        link
        fedilink
        English
        arrow-up
        1
        ·
        21 days ago

        In fairness to Intel, every modern semi design house has that same issue: a chip is designed and laid out for a specific node, so this isn’t really a failing so much as a how-it-works.

        I thought i read somewhere that either their design was particularly tailored towards a specific node or that following that they made it a higher priority to be less bound to one. But i can’t find a source for it, so i might be mistaken.