• 155 Posts
  • 1.79K Comments
Joined 2 years ago
cake
Cake day: June 9th, 2023

help-circle

  • For example, a DSLR sensor is not all that different than most other camera sensors. The main difference is what is being done on the sensor versus what is broken out for external access.

    I’m certainly no expert here, but I tried building an astro photo setup old school style with some old we cams. None of the sensors I had available broke out the features I needed. I could have done some external image stacking but there were a lot of errors in the compressed output from the module. I basically learned I need to buy a sensor based on the features available in the Linux kernel driver to do what I wanted to do, and that randomly chosen cheap webcams didn’t have very much low level access.

    From the hardware side, it is a ton of data output that can be challenging to handle and process quickly enough. The frequencies are quite high and that makes circuit design challenging too. It is easier to drop stuff from the stream earlier and output a much smaller final product like image. At least, that was my experience as a maker that was mostly playing in a space that is over my head in such a project.




  • j4k3@lemmy.worldtogamingcirclejerk@lemmy.world"Breaks my immersion"
    link
    fedilink
    English
    arrow-up
    4
    arrow-down
    3
    ·
    7 hours ago

    As a kid, who doesn’t get a little warped by Samus Aran being female? Maybe it was just my experience growing up in the christocultist world, but I was in denial about Samus at ~7-8 years old with my only familiarity being passive and Smash Bros.

    Now I see anyone that has a similar outlook as being ~7-8 years old in their cognitive development and KAFS


  • I thought about doing it like this for a long time but never tried it because I think it has several issues. The horizontal layer deposition lines are aesthetically ugly IMO.

    Then there is the issue of how you are going to create compliance. If you are going to rely on some super soft filament, I think it kinda defeats the point. Replacement pads are much cheaper than buying some specialty filament.

    By printing and bending a tube, it becomes possible to design for both bending into a loop and for the properties of a soft pad.

    Lastly, the majority of pads require a sleeve like retention ring that barely slips into a groove around the plastic enclosure body of each side of the headphones. There is a open pocket sewn into the back side of each headphone pad that is a stretchy layer of vinyl used to slip into the groove. It is possible to replace the plate that is used to form this slip ring retainer groove, but then you’ll have exposed screws.

    I’m not looking to replace any parts of the headphones, so I need a way to retain the pad using this existing groove. In the pic for the post, one of the test prints is oriented to show the way I incorporated the retaining groove into the design.

    Of course, not all headphones are designed like this with the same pads. However, these style pads are used on most low and mid tier headphones because they are all contract manufactured in the same place with only minor variations and where these semi universal type pads are a major cost cutting factor. So designing for this type of pad is designing for the most common style of headphones. One might argue that these are the cheapest pads to replace, and they are. But, knowledge about how modern contract manufacturing works is rather rare, and no one is advertising that their products are the same as everyone else with just a different sticker and color applied or a single variation of molding dies added to create a slight variation in appearance. These pads can be found for $10-$15, but you have to know they are universal and be willing to gamble a bit by buying from whatever middleman has too much stock of these or dies not see them as a profitable thing to market at a markup.


  • The problem is that the infill layers are not well fused and the lack of alignment means they will only cross at angles. This post design can be made solid and turned into cubic with no anchor. That might work with a softer material, but there are still overhangs and the infill pattern is likely to create non linear twist to the bending. At least on my headphones, the tightest part of the bend needs to obfuscate around 60% of the vertical distance on the other side. In other (poor) words, for ever 10mm of vertical height, 6mm is folded out of the way. That is a lot of bulk to push out of the way. Even in this instance I posted, the back side has sections with thinner walls in some areas to make the flex work in such a tight bend without buckling.



  • This is a major curiosity of mine too. Just the shell seems to be pushing the amount of flexibility of this material in my present design. I’m not using any infill. I can alter the shape a lot. I have a cheap pair of thermal cycling bib shorts that were way too small and I never sent back. Those may become a covered print experiment. That material is thick, dense, and still conforms a lot.

    I’m most interested in exploring wave shaping. It would be trivial to add more complex shaping in the center cavity. I can imagine making a print support that sits inside the tube and enables me to create some more complex voids in places.

    My main goal right now is to com up with an integrated clip that allows one end to open and close easily while looking pretty. Then I can move on to more audio quality tuning.



  • j4k3@lemmy.worldOPMto3DPrinting@lemmy.worldPlaying with some ugly old TPU
    link
    fedilink
    English
    arrow-up
    1
    ·
    edit-2
    2 days ago

    I haven’t tried a lot of flex materials. I’ve only used them for things like a few seals. Compliant mechanisms have been a curiosity of mine for a long time, but I haven’t had the intuition to establish an entry point project worth trying on my own.

    Like as a totally random aside, if this TPU is super dry like how the one test print that looks super crisp with sharp edges, it appears to be air tight. I see a lot of potential for building cheap pneumatic, cable, or passive force driven actuators while playing around with my thumbs sealing each end.

    I intuit that this level of usefulness in mechanisms would be hampered by the low quality of the first bridging layers. Absolutely any moisture in the TPU causes random gaps to form as the steam escapes at the nozzle tip in small bursts. Any larger bridging is going to have some amount of dropped passes as a result. I don’t think this is a real issue if the TPU is very dry on a totally enclosed dry feed path to the extruder, but I don’t like the properties of this material when it is super dry. Overall, my design method in this case is likely oriented in the best way for the properties of TPU and the mechanical best case for compliant design. The layer deposition steps and top/bottom layer properties of FDM are not optimal for compliance in most cases. This particular design is capable of compliance both for the bending form to create the headphones pad, and as a pad against the ear after it is installed.

    It is also ~$10-$15 for replacement headphone pads, so making and sharing such a design should be limited to materials most people already have on hand. I’m very tempted to try this with a 98A TPE, but it is just too expensive of a material to justify for this project when I’ve had 3 rolls of TPU banging around for years unused and only got them because they were dirt cheap clearance sale materials. I would do a lot more if I had an IDEX, but I don’t need that rabbit hole money bonfire.

    If anything, a dirt cheap foaming TPU could be interesting if such a thing existed. It might be possible to create something functionally similar if TPU could somehow be exposed to a humidity controlled environment at a specific percentage, but I have no idea how moisture saturation works on a deep level, like if the saturation would remain regulated by the humidity percentage or if the exposure would allow the filament to always wick all available moisture where a much more complicated setup would be required to ensure consistent properties. Anyways, my point here is that the best properties for me are not from the super dried TPU needed for bridging and bridging is itself a poor mechanism with FDM. It is best if it can be avoided at the design level like I have done here.


  • j4k3@lemmy.worldOPMto3DPrinting@lemmy.worldPlaying with some ugly old TPU
    link
    fedilink
    English
    arrow-up
    14
    arrow-down
    1
    ·
    2 days ago

    The vinyl of all headphones is plastic. I’m not concerned at all. The fear of plastic is mostly paranoia. The vast majority of micro plastics are from car tires yet that is not what people freak out about.

    I painted cars for a long time and worked in heavy industry for awhile. I’ve been exposed to truly nasty stuff. Other than my horns, and third arm, I’m mostly fine so long as a full moon doesn’t happen on a Thursday.

    Plastics like this are generally stable. TPU is used in the interior of your car and the grips on power tools. There may be some in your sports clothing. You are likely eating food that is packaged in PLA and PET. There is ABS is everything. These are all around you and come in printable forms. The colors made in the modern world are not arsenic, mercury, chromium, and lead based, like was common 200 years ago.


  • Mostly, the design is motivated by the aesthetics, but also TPU sucks at bridging and supports.

    Testing the loudness really needs two sides and a later stage prototype. It is also very subjective without a repeatable testing technique. I personally loath the subjective nature of opinions people have about anything audio related and avoid saying anything about such myself to the best of my ability.

    The overlapping joint insert was just a first idea for a design. There is a section at the top of this joint that I didn’t bother to optimise for vase mode but the rest of the print is possible. It would take some tuning to get vase mode fully dialed. I would probably need to use some helix trickery to get the exact stiffness where I need it. Vase mode was and is still likely in the cards.

    I also have a design in CAD that I made today. It has an exposed infill pattern and solid shell in places. I used the pictured design to conceptualize how the infill would behave and how much movement to expect. I may never print that one. I still don’t have a way to connect it that I like.

    I’m also playing with the idea of covering a print in textile materials and or altering pockets and chambers.

    You don’t find many printed headphone pads and the ones that do exist are very ugly IMO. Prototyping in yellow is only just that. I have other colors of TPU on hand.

    Overall, this has the potential to dial in many properties from fit to audio properties. The orientation is ideal for the properties of TPU. The abstract concept is broadly universal where this will technically work for the majority of headphones. As is, it doesn’t look terrible in person and I can make this much prettier if I choose.

    The pictured setup is an early alpha phase prototype and it is not glued while it is close to the right size so just the friction is holding it together in the pic. I could glue this and it would likely work fine.